on the general sum–connectivity co–index of graphs
نویسندگان
چکیده
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
منابع مشابه
On the Multiplicative Zagreb Coindex of Graphs
Abstract. For a (molecular) graph G with vertex set V (G) and edge set E(G), the first and second Zagreb indices of G are defined as M1(G) = ∑ v∈V (G) dG(v) 2 and M2(G) = ∑ uv∈E(G) dG(u)dG(v), respectively, where dG(v) is the degree of vertex v in G. The alternative expression of M1(G) is ∑ uv∈E(G)(dG(u) + dG(v)). Recently Ashrafi, Došlić and Hamzeh introduced two related graphical invariants M...
متن کاملOn the F-index and F-coindex of the line graphs of the subdivision graphs
The aim of this work is to investigate the F-index and F-coindex of the line graphs of the cycle graphs, star graphs, tadpole graphs, wheel graphs and ladder graphs using the subdivision concepts. F-index of the line graph of subdivision graph of square grid graph, 2D-lattice, nanotube and nanotorus of TUC4C8[p, q] are also investigated here.
متن کاملA note on the first Zagreb index and coindex of graphs
Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...
متن کاملOn computing the general Narumi-Katayama index of some graphs
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولthe effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
the impact of morphological awareness on the vocabulary development of the iranian efl students
this study investigated the impact of explicit instruction of morphemic analysis and synthesis on the vocabulary development of the students. the participants were 90 junior high school students divided into two experimental groups and one control group. morphological awareness techniques (analysis/synthesis) and conventional techniques were used to teach vocabulary in the experimental groups a...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of mathematical chemistryناشر: university of kashan
ISSN 2228-6489
دوره 2
شماره Issue 1 (Special Issue on the Occasion of Mircea V. Diudea's Sixtieth Birthday) 2011
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023